Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
2.
Orphanet J Rare Dis ; 17(1): 340, 2022 09 05.
Article En | MEDLINE | ID: mdl-36064416

BACKGROUND: Enoyl-CoA hydratase short-chain 1 (ECHS1) is a key mitochondrial enzyme that is involved in valine catabolism and fatty acid beta-oxidation. Mutations in the ECHS1 gene lead to enzymatic deficiency, resulting in the accumulation of certain intermediates from the valine catabolism pathway. This disrupts the pyruvate dehydrogenase complex and the mitochondrial respiratory chain, with consequent cellular damage. Patients present with a variable age of onset and a wide spectrum of clinical features. The Leigh syndrome phenotype is the most frequently reported form of the disease. Herein, we report a case of a male with ECHS1 deficiency who was diagnosed at 8 years of age. He presented severe dystonia, hyperlordosis, moderate to severe kyphoscoliosis, great difficulty in walking, and severe dysarthria. A valine-restricted and total fat-restricted diet was considered as a therapeutic option after the genetic diagnosis. An available formula that restricted branched-chain amino acids and especially restricted valine was used. We also restricted animal protein intake and provided a low-fat diet that was particularly low in dairy fat. RESULTS: This protein- and fat-restricted diet was initiated with adequate tolerance and adherence. After three years, the patient noticed an improvement in dystonia, especially in walking. He currently requires minimal support to walk or stand. Therefore, he has enhanced his autonomy to go to school or establish a career for himself. His quality of life and motivation for treatment have greatly increased. CONCLUSIONS: There is still a substantial lack of knowledge about this rare disorder, especially knowledge about future effective treatments. However, early diagnosis and treatment with a valine- and fat-restricted diet, particularly dairy fat-restricted diet, appeared to limit disease progression in this patient with ECHS1 deficiency.


Dystonia , Enoyl-CoA Hydratase , Animals , Diet, Fat-Restricted , Enoyl-CoA Hydratase/genetics , Enoyl-CoA Hydratase/metabolism , Humans , Male , Quality of Life , Valine
3.
Dev Med Child Neurol ; 64(6): 743-752, 2022 06.
Article En | MEDLINE | ID: mdl-34988976

AIM: To correlate clinical, radiological, and biochemical features with genetic findings in children with bilateral basal ganglia lesions of unknown aetiology, and propose a diagnostic algorithm for early recognition. METHOD: Children with basal ganglia disease were recruited in a 2-year prospective multicentre study for clinical, biomarker, and genetic studies. Radiological pattern recognition was examined by hierarchical clustering analysis. RESULTS: We identified 22 genetic conditions in 30 out of 62 paediatric patients (37 males, 25 females; mean age at onset 2y, SD 3; range 0-10y; mean age at assessment 11y, range 1-25y) through gene panels (n=11), whole-exome sequencing (n=13), and mitochondrial DNA (mtDNA) sequencing (n=6). Genetic aetiologies included mitochondrial diseases (57%), Aicardi-Goutières syndrome (20%), and monogenic causes of dystonia and/or epilepsy (17%) mimicking Leigh syndrome. Radiological abnormalities included T2-hyperintense lesions (n=26) and lesions caused by calcium or manganese mineralization (n=9). Three clusters were identified: the pallidal, neostriatal, and striatal, plus the last including mtDNA defects in the oxidative phosphorylation system with prominent brain atrophy. Mitochondrial biomarkers showed poor sensitivity and specificity in children with mitochondrial disease, whereas interferon signature was observed in all patients with patients with Aicardi-Goutières syndrome. INTERPRETATION: Combined whole-exome and mtDNA sequencing allowed the identification of several genetic conditions affecting basal ganglia metabolism. We propose a diagnostic algorithm which prioritizes early use of next-generation sequencing on the basis of three clusters of basal ganglia lesions.


Basal Ganglia Diseases , Mitochondrial Diseases , Autoimmune Diseases of the Nervous System , Basal Ganglia Diseases/diagnosis , Basal Ganglia Diseases/genetics , Child , Child, Preschool , DNA, Mitochondrial , Female , Humans , Infant , Infant, Newborn , Magnetic Resonance Imaging , Male , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/genetics , Mutation , Nervous System Malformations , Prospective Studies
4.
Sci Transl Med ; 13(613): eabe7104, 2021 Sep 29.
Article En | MEDLINE | ID: mdl-34586830

Huntington's disease (HD) is a hereditary neurodegenerative disorder of the basal ganglia for which disease-modifying treatments are not yet available. Although gene-silencing therapies are currently being tested, further molecular mechanisms must be explored to identify druggable targets for HD. Cytoplasmic polyadenylation element binding proteins 1 to 4 (CPEB1 to CPEB4) are RNA binding proteins that repress or activate translation of CPE-containing transcripts by shortening or elongating their poly(A) tail. Here, we found increased CPEB1 and decreased CPEB4 protein in the striatum of patients and mouse models with HD. This correlated with a reprogramming of polyadenylation in 17.3% of the transcriptome, markedly affecting neurodegeneration-associated genes including PSEN1, MAPT, SNCA, LRRK2, PINK1, DJ1, SOD1, TARDBP, FUS, and HTT and suggesting a new molecular mechanism in neurodegenerative disease etiology. We found decreased protein content of top deadenylated transcripts, including striatal atrophy­linked genes not previously related to HD, such as KTN1 and the easily druggable SLC19A3 (the ThTr2 thiamine transporter). Mutations in SLC19A3 cause biotin-thiamine­responsive basal ganglia disease (BTBGD), a striatal disorder that can be treated with a combination of biotin and thiamine. Similar to patients with BTBGD, patients with HD demonstrated decreased thiamine in the cerebrospinal fluid. Furthermore, patients and mice with HD showed decreased striatal concentrations of thiamine pyrophosphate (TPP), the metabolically active form of thiamine. High-dose biotin and thiamine treatment prevented TPP deficiency in HD mice and attenuated the radiological, neuropathological, and motor HD-like phenotypes, revealing an easily implementable therapy that might benefit patients with HD.


Huntington Disease , Polyadenylation , Transcription Factors/genetics , mRNA Cleavage and Polyadenylation Factors/genetics , Humans , Huntington Disease/genetics , Huntington Disease/therapy , Membrane Transport Proteins , Transcriptome
5.
J Inherit Metab Dis ; 44(2): 401-414, 2021 03.
Article En | MEDLINE | ID: mdl-32677093

The neurological phenotype of 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) and short-chain enoyl-CoA hydratase (SCEH) defects is expanding and natural history studies are necessary to improve clinical management. From 42 patients with Leigh syndrome studied by massive parallel sequencing, we identified five patients with SCEH and HIBCH deficiency. Fourteen additional patients were recruited through collaborations with other centres. In total, we analysed the neurological features and mutation spectrum in 19 new SCEH/HIBCH patients. For natural history studies and phenotype to genotype associations we also included 70 previously reported patients. The 19 newly identified cases presented with Leigh syndrome (SCEH, n = 11; HIBCH, n = 6) and paroxysmal dystonia (SCEH, n = 2). Basal ganglia lesions (18 patients) were associated with small cysts in the putamen/pallidum in half of the cases, a characteristic hallmark for diagnosis. Eighteen pathogenic variants were identified, 11 were novel. Among all 89 cases, we observed a longer survival in HIBCH compared to SCEH patients, and in HIBCH patients carrying homozygous mutations on the protein surface compared to those with variants inside/near the catalytic region. The SCEH p.(Ala173Val) change was associated with a milder form of paroxysmal dystonia triggered by increased energy demands. In a child harbouring SCEH p.(Ala173Val) and the novel p.(Leu123Phe) change, an 83.6% reduction of the protein was observed in fibroblasts. The SCEH and HIBCH defects in the catabolic valine pathway were a frequent cause of Leigh syndrome in our cohort. We identified phenotype and genotype associations that may help predict outcome and improve clinical management.


Abnormalities, Multiple/genetics , Amino Acid Metabolism, Inborn Errors/genetics , Dystonia/genetics , Enoyl-CoA Hydratase/genetics , Leigh Disease/genetics , Thiolester Hydrolases/deficiency , Valine/metabolism , Brain/diagnostic imaging , Child, Preschool , Dystonia/diagnosis , Enoyl-CoA Hydratase/deficiency , Female , Heterozygote , High-Throughput Nucleotide Sequencing , Humans , Infant , Internationality , Leigh Disease/diagnosis , Leigh Disease/metabolism , Magnetic Resonance Imaging , Male , Metabolic Networks and Pathways/genetics , Mutation , Phenotype , Survival Rate , Thiolester Hydrolases/genetics
6.
Parkinsonism Relat Disord ; 80: 165-174, 2020 11.
Article En | MEDLINE | ID: mdl-33022436

OBJECTIVE: To perform phenotype and genotype characterization in myoclonus-dystonia patients and to validate clinical rating tools. METHOD: Two movement disorders experts rated patients with the Burke-Fahn-Marsden and Unified-Myoclonus rating scales using a video-recording protocol. Clinimetric analysis was performed. SGCE mutations were screened by Sanger sequencing and multiplex ligation-dependent probe amplification. RESULTS: 48 patients were included and 43/48 rated. Mean age at assessment was 12.9±10.5 years (range 3-51) and 88% were ≤18 years of age. Myoclonus was a universal sign with a rostro-caudal severity-gradient. Myoclonus increased in severity and spread to lower limbs during action tests. Stimulus-evoked myoclonus was observed in 86.8% cases. Dystonia was common but mild. It had a focal distribution and was action-induced, causing writer's cramp (69%) and gait dystonia (34%). The severity of both myoclonus and dystonia had a strong impact on hand writing and walking difficulties. The Unified Myoclonus Rating scale showed the best clinimetric properties for the questionnaire, action myoclonus and functional subscales, and exceeded the Burke-Fahn-Marsden scale in its utility in assessing functional impairment in MDS patients. Twenty-one different SGCE mutations were identified in 45/48 patients, eleven being novel (most prevalent p. Val187*, founder mutation in Canary Islands). CONCLUSION: This study quantifies the severity of the motor phenotype in SGCE-myoclonus dystonia syndrome, with a special focus on children, and identifies disabilities in gross and fine motor tasks that are essential for childhood development. Our results contribute to the knowledge of SGCE-related MDS in the early stage of evolution, where disease-modifying therapies could be initiated in order to prevent long-term social and physical burdens.


Dystonic Disorders/genetics , Dystonic Disorders/physiopathology , Motor Skills/physiology , Sarcoglycans/genetics , Adolescent , Adult , Child , Child Development/physiology , Child, Preschool , Dystonic Disorders/diagnosis , Female , Humans , Male , Middle Aged , Mutation , Phenotype , Severity of Illness Index , Young Adult
7.
Fluids Barriers CNS ; 16(1): 34, 2019 Nov 14.
Article En | MEDLINE | ID: mdl-31727079

BACKGROUND: Cerebrospinal fluid (CSF) metabolomic investigations are a powerful tool for studying neurometabolic diseases. We aimed to assess the effect of CSF contamination with blood on the concentrations of selected biomarkers. METHODS: CSF samples were spiked in duplicate with increasing volumes of whole blood under two conditions: (A) pooled CSF spiked with fresh whole blood and frozen to cause red blood cell (RBC) lysis; (B) pooled CSF spiked with fresh blood and centrifuged (the supernatant with no RBCs was frozen until the moment of analysis). CSF concentrations of amino acids, biogenic amines, pterins, and vitamins were analysed by HPLC coupled with tandem mass spectrometry, electrochemical and fluorescence detection. RESULTS: Aspartate, glutamate, taurine, ornithine, glycine, citrulline, pyridoxal 5´-phosphate, 5-methyltetrahydrofolate, and thiamine showed higher values when RBCs were lysed when compared with those of CSF with no RBC, while arginine, 5-hydroxyindoleacetic and homovanillic acids showed lower values. When RBCs were removed from CSF, only some amino acids, thiamine and pyridoxal 5´-phosphate showed moderately higher values when compared with the non-spiked CSF sample. CONCLUSIONS: CSF-targeted metabolomic analysis is feasible even when substantial RBC contamination of CSF has occurred since CSF centrifugation to remove RBC prior to freezing eliminated most of the interferences observed.


Biogenic Amines/analysis , Blood Chemical Analysis , Cerebrospinal Fluid , Pterins/analysis , Vitamins/analysis , Humans
8.
J Inherit Metab Dis ; 42(4): 581-597, 2019 07.
Article En | MEDLINE | ID: mdl-31095747

Thiamine is a crucial cofactor involved in the maintenance of carbohydrate metabolism and participates in multiple cellular metabolic processes within the cytosol, mitochondria, and peroxisomes. Currently, four genetic defects have been described causing impairment of thiamine transport and metabolism: SLC19A2 dysfunction leads to diabetes mellitus, megaloblastic anemia and sensory-neural hearing loss, whereas SLC19A3, SLC25A19, and TPK1-related disorders result in recurrent encephalopathy, basal ganglia necrosis, generalized dystonia, severe disability, and early death. In order to achieve early diagnosis and treatment, biomarkers play an important role. SLC19A3 patients present a profound decrease of free-thiamine in cerebrospinal fluid (CSF) and fibroblasts. TPK1 patients show decreased concentrations of thiamine pyrophosphate in blood and muscle. Thiamine supplementation has been shown to improve diabetes and anemia control in Rogers' syndrome patients due to SLC19A2 deficiency. In a significant number of patients with SLC19A3, thiamine improves clinical outcome and survival, and prevents further metabolic crisis. In SLC25A19 and TPK1 defects, thiamine has also led to clinical stabilization in single cases. Moreover, thiamine supplementation leads to normal concentrations of free-thiamine in the CSF of SLC19A3 patients. Herein, we present a literature review of the current knowledge of the disease including related clinical phenotypes, treatment approaches, update of pathogenic variants, as well as in vitro and in vivo functional models that provide pathogenic evidence and propose mechanisms for thiamine deficiency in humans.


Membrane Transport Proteins/deficiency , Thiamine Deficiency/genetics , Thiamine/metabolism , Anemia, Megaloblastic , Biological Transport , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Diabetes Mellitus , Hearing Loss, Sensorineural , Humans , Leigh Disease , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mutation , Phenotype , Thiamine/cerebrospinal fluid , Thiamine/therapeutic use , Thiamine Deficiency/congenital , Thiamine Deficiency/drug therapy , Thiamine Pyrophosphate/metabolism
9.
Mol Genet Metab ; 126(3): 250-258, 2019 03.
Article En | MEDLINE | ID: mdl-30642748

AIM: To perform a deep phenotype characterisation in a pedigree of 3 siblings with Leigh syndrome and compound heterozygous NDUFAF6 mutations. METHOD: A multi-gene panel of childhood-onset basal ganglia neurodegeneration inherited conditions was analysed followed by functional studies in fibroblasts. RESULTS: Three siblings developed gait dystonia in infancy followed by rapid progression to generalised dystonia and psychomotor regression. Brain magnetic resonance showed symmetric and bilateral cytotoxic lesions in the putamen and proliferation of the lenticular-striate arteries, latter spreading to the caudate and progressing to cavitation and volume loss. We identified a frameshift novel change (c.554_558delTTCTT; p.Tyr187AsnfsTer65) and a pathogenic missense change (c.371T>C; p.Ile124Thr) in the NDUFAF6 gene, which segregated with an autosomal recessive inheritance within the family. Patient mutations were associated with the absence of the NDUFAF6 protein and reduced activity and assembly of mature complex I in fibroblasts. By functional complementation assay, the mutant phenotype was rescued by the canonical version of the NDUFAF6. A literature review of 14 NDUFAF6 patients showed a consistent phenotype of an early childhood insidious onset neurological regression with prominent dystonia associated with basal ganglia degeneration and long survival. INTERPRETATION: NDUFAF6-related Leigh syndrome is a relevant cause of childhood onset dystonia and isolated bilateral striatal necrosis. By genetic complementation, we could demonstrate the pathogenicity of novel genetic variants in NDUFAF6.


Dystonic Disorders/genetics , Electron Transport Complex I/genetics , Leigh Disease/genetics , Mitochondrial Proteins/genetics , Striatonigral Degeneration/congenital , Biopsy , Child , Cohort Studies , Female , Fibroblasts , Gene Expression , Genetic Variation , Humans , Leigh Disease/complications , Male , Muscles/pathology , Mutation , Pedigree , Siblings , Striatonigral Degeneration/genetics
10.
Mov Disord ; 32(11): 1620-1630, 2017 Nov.
Article En | MEDLINE | ID: mdl-28845923

BACKGROUND: Pantothenate kinase-associated neurodegeneration is a progressive neurological disorder occurring in both childhood and adulthood. The objective of this study was to design and pilot-test a disease-specific clinical rating scale for the assessment of patients with pantothenate kinase-associated neurodegeneration. METHODS: In this international cross-sectional study, patients were examined at the referral centers following a standardized protocol. The motor examination was filmed, allowing 3 independent specialists in movement disorders to analyze 28 patients for interrater reliability assessment. The scale included 34 items (maximal score, 135) encompassing 6 subscales for cognition, behavior, disability, parkinsonism, dystonia, and other neurological signs. RESULTS: Forty-seven genetically confirmed patients (30 ± 17 years; range, 6-77 years) were examined with the scale (mean score, 62 ± 21; range, 20-106). Dystonia with prominent cranial involvement and atypical parkinsonian features were present in all patients. Other common signs were cognitive impairment, psychiatric features, and slow and hypometric saccades. Dystonia, parkinsonism, and other neurological features had a moderate to strong correlation with disability. The scale showed good internal consistency for the total scale (Cronbach's α = 0.87). On interrater analysis, weighted kappa values (0.30-0.93) showed substantial or excellent agreement in 85% of the items. The scale also discriminated a subgroup of homozygous c.1583C>T patients with lower scores, supporting construct validity for the scale. CONCLUSIONS: The proposed scale seems to be a reliable and valid instrument for the assessment of pediatric and adult patients with pantothenate kinase-associated neurodegeneration. Additional validation studies with a larger sample size will be required to confirm the present results and to complete the scale validation testing. © 2017 International Parkinson and Movement Disorder Society.


Disabled Persons , Dystonia/diagnosis , Pantothenate Kinase-Associated Neurodegeneration/diagnosis , Parkinsonian Disorders/diagnosis , Severity of Illness Index , Adolescent , Adult , Aged , Child , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/etiology , Cross-Sectional Studies , Dystonia/etiology , Humans , Mental Disorders/diagnosis , Mental Disorders/etiology , Middle Aged , Ocular Motility Disorders/diagnosis , Ocular Motility Disorders/etiology , Pantothenate Kinase-Associated Neurodegeneration/complications , Pantothenate Kinase-Associated Neurodegeneration/genetics , Parkinsonian Disorders/etiology , Pilot Projects , Reproducibility of Results , Young Adult
11.
Neuropediatrics ; 48(3): 166-184, 2017 Jun.
Article En | MEDLINE | ID: mdl-28561207

We investigated the genetic, phenotypic, and interferon status of 46 patients from 37 families with neurological disease due to mutations in ADAR1. The clinicoradiological phenotype encompassed a spectrum of Aicardi-Goutières syndrome, isolated bilateral striatal necrosis, spastic paraparesis with normal neuroimaging, a progressive spastic dystonic motor disorder, and adult-onset psychological difficulties with intracranial calcification. Homozygous missense mutations were recorded in five families. We observed a p.Pro193Ala variant in the heterozygous state in 22 of 23 families with compound heterozygous mutations. We also ascertained 11 cases from nine families with a p.Gly1007Arg dominant-negative mutation, which occurred de novo in four patients, and was inherited in three families in association with marked phenotypic variability. In 50 of 52 samples from 34 patients, we identified a marked upregulation of type I interferon-stimulated gene transcripts in peripheral blood, with a median interferon score of 16.99 (interquartile range [IQR]: 10.64-25.71) compared with controls (median: 0.93, IQR: 0.57-1.30). Thus, mutations in ADAR1 are associated with a variety of clinically distinct neurological phenotypes presenting from early infancy to adulthood, inherited either as an autosomal recessive or dominant trait. Testing for an interferon signature in blood represents a useful biomarker in this context.


Adenosine Deaminase/genetics , Autoimmune Diseases of the Nervous System/genetics , Autoimmune Diseases of the Nervous System/immunology , Interferon Type I/metabolism , Nervous System Malformations/genetics , Nervous System Malformations/immunology , RNA-Binding Proteins/genetics , Adolescent , Adult , Autoimmune Diseases of the Nervous System/diagnostic imaging , Biomarkers/metabolism , Child , Child, Preschool , Female , Humans , Infant , Male , Mutation , Nervous System Malformations/diagnostic imaging , Phenotype , Young Adult
12.
Expert Rev Neurother ; 16(7): 755-63, 2016 07.
Article En | MEDLINE | ID: mdl-27191787

INTRODUCTION: Thiamine is a key cofactor for energy metabolism in brain tissue. There are four major genetic defects (SLC19A2, SLC19A3, SLC25A19 and TPK1) involved in the metabolism and transport of thiamine through cellular and mitochondrial membranes. Neurological involvement predominates in three of them (SLC19A3, SCL25A19 and TPK1), whereas patients with SLC19A2 mutations mainly present extra-neurological features (e.g. diabetes mellitus, megaloblastic anaemia and sensori-neural hearing loss). These genetic defects may be amenable to therapeutic intervention with vitamins supplementation and hence, constitutes a main area of research. AREAS COVERED: We conducted a literature review of all reported cases with these genetic defects, and focused our paper on treatment efficacy and safety, adverse effects, dosing and treatment monitoring. Expert commentary: Doses of thiamine vary according to the genetic defect: for SLC19A2, the usual dose is 25-200 mg/day (1-4 mg/kg per day), for SLC19A3, 10-40 mg/kg per day, and for TPK1, 30 mg/kg per day. Thiamine supplementation in SLC19A3-mutated patients restores CSF and intracellular thiamine levels, resulting in successful clinical benefits. In conclusion, evidence collected so far suggests that the administration of thiamine improves outcome in SLC19A-2, SLC19A3- and TPK1-mutated patients, so most efforts should be aimed at early diagnosis of these disorders.


Anemia, Megaloblastic , Membrane Transport Proteins , Brain/metabolism , Humans , Mutation , Thiamine/genetics , Thiamine/therapeutic use
...